Performance of Microcalcification Detection Algorithms

نویسندگان

  • Vaibhav Srivastava
  • David Lalush
چکیده

SRIVASTAVA, VAIBHAV. Performance of microcalcification detection algorithms. (Under the direction of Dr Wesley Snyder) Breast cancer is the most common malignancy in women and is three times more common than all gynecologic malignancies put together. The incidence of breast cancer has been increasing steadily from an incidence of 1:20 in 1960 to 1:8 women today. Seventy percent of all breast cancers are found through breast self-exams. However not all lumps are detectable by touch and mammography is a low-dose X-ray examination that can detect breast cancer up to two years before it is large enough to be felt. Some patterns of microcalcifications (small white deposits of calcium) give an early indication of cancer. Their small size makes their detection difficult for the radiologist. This brings in the role of CAD (Computer Aided Diagnosis) which serve as an assistant to the radiologist. In this thesis we have investigated the performance of three state of the art CAD techniques for the detection of microcalcifications in mammograms. First, is a wavelet based technique which applies an adaptive wavelet filter to the input mammogram. Then it calculates HOS (Higher Order Statistics) values for maxima locations that are determined from the input image by an empirical method. This is followed by determination of a threshold using a cross entropy based thresholding algorithm. The thresholded image gives the locations of microcalcifications. Second, is a technique that pre-processes the input mammogram with a tophat morphological filter which only preserves objects that are smaller than the size of the filter used in pre-processing. This is again followed by the determination of a threshold using the same thresholding algorithm as in the first technique. The thresholded image indicates the positions of microcalcifications. We have also done an investigation of co-occurrence matrix based entropy thresholding schemes. We found that two dimensional matrix based algorithms perform better than three dimensional based algorithms. Although both fail in case of images with high dynamic range which make them unsuitable for medical imaging. However the cross entropy based method performed better than co-occurrence matrix based techniques for both low as well as high resolution images. Third, is a technique that makes use of a high pass filter for pre-processing. Classification of a location as a microcalcification is done by a SVM (Support Vector Machine) classifier using a scheme called SEL (Successive Enhancement Learning). These techniques have been compared by the use of ROC curves and we found out that the SVM based technique gives the lowest false positives for high detection rate. However cross entropy method does gives lower false positives for detection rates lower than 65%. PERFORMANCE OF MICROCALCIFICATION DETECTION ALGORITHMS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters

Introduction Breast cancer is one of the most common types of cancer among women.  Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...

متن کامل

Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques

In this work, the effect of an image enhancement processing stage and the parameter tuning of a computer-aided detection (CAD) system for the detection of microcalcifications in mammograms is assessed. Five (5) image enhancement algorithms were tested introducing the contrast-limited adaptive histogram equalization (CLAHE), the local range modification (LRM) and the redundant discrete wavelet (...

متن کامل

Computer aided detection system for clustered microcalcifications :

We have developed a computer-aided detection (CAD) system to detect clustered microcalcification automatically on full-field digital mammograms (FFDMs) and a CAD system for screen-film mammograms (SFMs). The two systems used the same computer vision algorithms but their false positive (FP) classifiers were trained separately with sample images of each modality. In this study, we compared the pe...

متن کامل

A Region Growing Segmentation for Detection of Microcalcification in Digitized Mammograms

This paper presents an approach for detecting microcalcifications in digital mammograms. The microcalcifications appear i n small clusters of few pixels with relatively high intensity compared with their neighboring pixels. The processing scheme used here focuses on detection of microcalcification in a very weak contrast to their background and presents a computerized technique to identify the ...

متن کامل

A Hybrid the Nonsubsampled Contourlet Transform and Homomorphic Filtering for Enhancing Mammograms

Mammogram is important for early breast cancer detection. But due to the low contrast of microcalcifications and noise, it is difficult to detect microcalcification. This paper presents a comparative study in digital mammography image enhancement based on three different algorithms: homomorphic filtering, unsharp masking and our proposed methods. This latter uses a hybrid method Combining conto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005